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A model equation for non-linear Alfven waves, allowing for dispersion and dissipation in magnetohydrodynamics, is derived. 
The evolution of an Alfven soliton is examined. © 1999 Elsevier Science Ltd. All fights reserved. 

1. The initial system is taken to consist of the one-dimensional magnetohydrodynamic equations with Hall dispersion 
and dissipation, represented by the viscosity and magnetic viscosity. All the quantities are assumed to depend only 
on the variables x and t. In dimensionless form, this system is [1] 
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Here u, o and w are the components of the velocity vector, Bx, By, Bz are the components of the magnetic induction 
vector, p is the pressure, s is the entropy, T is the temperature, Re is the Reynolds number, Rm is the magnetic 
Reynolds number, and k is the dimensionless Hall parameter. 

We shall confine ourselves below to long waves, so that we can immediately introduce a small parameter ~5 (8 is 
of the same order of smallness as the wave number). We must also assume that the dissipation is small, of the form 

1 1 8 - - - + -  
Re R m 

Another important point is that the dispersion is assumed to be finite, that is, k - 1. Moreover, the wave 
propagation must not be longitudinal: sin ct - 1, where ct is the angle between thex axis and the direction of the 
unperturbed magnetic field. We represent By and Bz in the form 

By= b sin O, Bz=bcosO 

where b is the magnitude of the transverse component of the magnetic field and 0 is the direction of the magnetic 
field in the (y, z) plane. 
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We replace the independent variables according to the formulae 

~ = ~i(x- tcosa), x=53t 

Then, using the technique described in [2], expanding all the variables in powers of 8 and then substituting into 
the initial system, we obtain the equation 

O.~f+3~f2af~+p~_y~[~+/,̂ a3f a ( ~ f  _ :(f(~,))2ark]= O (1.1) 

200 (.2 l(l l s--:, -cos.j, 

where 00 is the constant term in the expansion of 0 in powers of 8, and a is the unperturbed velocity of sound. 
This equation is more accurate than that obtained in [3] and is an extension of the well-known equations for 

Alfven waves which allow only for dissipation and only for dispersion respectively. The cases of pure dispersion 
[4] and pure dissipation [5, 6] have been discussed before. 

Now, as in [7], we confine ourselves to the case y/13 = e, where e is a small parameter (dispersion predominates 
over dissipative effects). 

We make the replacement of variables 

~ =  t, f--  2U, ~=X 

In this case Eq. (1.1) reduces to the form 

~u 2 ~u a3u ~ ~u ~ 2 
-~-+6u ~x+-~-e~x(~+4u~.~.(u(y))dy)=0 (1.2) 

and is the perturbed modified Korteweg-de-Vries (MKdV) equation. 
It should be borne in mind below that the variables u,x and t we are using here are not the same as the physical 

variables. 

2. As we know [7], the perturbed MKdV equation 

~u - 2i~u aau "] 

is equivalent to the operator equation 

(2.1) 

where L and A are linear operators which depend on u and a[L,  A] is a commutator; the eigenvalues of L are 
independent of time, and the perturbation operator R (for real equations) is the same as R on the right-hand side 
of (2.1). 

Since Eq. (2.2) is exact, it can be used to develop the approximate theory of perturbations for MKdV solitons 
[8]. Here we consider the so-called adiabatic approximation of that theory. 

The solution of Eq. (2.1) can be represented in the form 

us(x, t) = 2o(t)sech h(z) + w(x, t), z = 2u(O (x- Ix(O) (2.3) 

where the first term defines the evolution of a soliton nucleus while the second describes the development of the 
tail. In the given approximation, we neglect the function w(x, t) and can thus determine only the functions t)(t) 
and ~t(t). Thus, from a physical point of view, the approximation is only applicable for small t for which a growing 
tail has no significant influence on the type of motion. In the case when u = o0, ia = 4o~t formula (2.3) describes 
a soliton of the unperturbed MKdV equation. 

The basic formulae of the adiabatic approximation have the form [8] 

= :  ch(z) 3;" - ch(z) 
(2.4) 

3. We will investigate Eq. (1.2) using perturbation theory. The perturbation operator for Eq. (1.2) has the form 

i~tL + [L,A] =/F.R (2.2) 
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R[u]=~xl~xx+4U X~_~(u(y))2dy ) (3.1) 

Substituting (2.3) into (3.1), we obtain 

R[u s ] = 8u 3 6 -  3 ch 2 (z ) -  4ch(z)sh(z) 
cha(z) (3.2) 

When (3.1) and (3.2) are substituted into the right-hand sides of (2.4), the latter reduce to improper integrals which, 
when evaluated, give 

dlJ. = 4u 2 -8u~ (3.3) "~'t = 8v3f" dt 

After integrating we obtain 

f... ~ 0  
, ~ t ( t ) = - ~ l n ( l - 1 6 ~ t l + l - - - ( ~ - l )  (3.4) II(t)= 

These formulae for small t can be used to follow the change of velocity and amplitude of an Alfven soliton under 
the effect of  dissipation. 
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